Advanced Developments in Radar Technology Training

Commitment 3 days, 7-8 hours a day.
Language English
User Ratings Average User Rating 4.8 See what learners said
Delivery Options Instructor-Led Onsite, Online, and Classroom Live


Advanced Developments in Radar Technology Training provide students who already have a basic understanding of radar a valuable extension into the newer capabilities being continuously pursued in our fast-moving field. While the course begins with a quick review of fundamentals – this is to establish a common base for the instruction to follow – it is best suited for the student who has taken one of the several basic radar courses available.

In each topic, the method of instruction is first to establish firmly the underlying principle, and only then are the current achievements and challenges addressed. Treated are such topics as pulse compression in which matched filter theory, resolution, and broadband pulse modulation are briefly reviewed, and then the latest code optimal searches and hybrid coding and code-variable pulse bursts are explored. Similarly, radar polarimetry is reviewed in principle, then the application to image processing (as in Synthetic Aperture Radar work) is covered. Doppler processing and its application to SAR imaging itself, then 3D SAR, the moving target problem, and other target signature work are also treated this way. Space-Time Adaptive Processing (STAP) is introduced; the resurgent interest in bistatic radar is discussed.

  • 3 days of  Advanced Developments in Radar Technology Training with an expert instructor
  • Advanced Developments in Radar Technology Electronic Course Guide
  • Certificate of Completion
  • 100% Satisfaction Guarantee


  • We can adapt this Advanced Developments in Radar Technology Training course to your group’s background and work requirements at little to no added cost.
  • If you are familiar with some aspects of this Advanced Developments in Radar Technology Training course, we can omit or shorten their discussion.
  • We can adjust the emphasis placed on the various topics or build the Advanced Developments in Radar Technology Training around the mix of technologies of interest to you (including technologies other than those included in this outline).
  • If your background is nontechnical, we can exclude the more technical topics, include the topics that may be of special interest to you (e.g., as a manager or policy-maker), and present the Advanced Developments in Radar Technology Training course in a manner understandable to lay audiences.

Upon completing this Advanced Developments in Radar Technology course, learners will be able to meet these objectives:


The target audience for this Advanced Developments in Radar Technology course:


The knowledge and skills that a learner must have before attending this Advanced Developments in Radar Technology course are:


Introduction and Background.
  • The nature of radar and the physics involved.
  • The concepts and tools required were briefly reviewed.
  • Directions took in radar development and the technological advances permitting them.
  • Further concepts and tools are more elaborate.
Advanced Developments in Radar Technology Training – Advanced Signal Processing.
  • Review of developments in pulse compression (matched filter theory, modulation techniques, the search for optimality) and in Doppler processing (principles, “coherent” radar, vector processing, digital techniques); establishing resolution in time (range) and in frequency (Doppler).
  • Recent considerations in hybrid coding, shaping the ambiguity function.
  • Target inference. Use of high range and high Doppler resolution: example and experimental results.
Synthetic Aperture Radar (SAR).
  • Fundamentals reviewed, 2-D and 3-D SAR, example image.
  • Developments in image enhancement. The dangerous point-scatterer assumption. Autofocusing methods in SAR, ISAR imaging. The ground moving target problem.
  • Polarimetry and its application in SAR. Review of polarimetry theory. Polarimetric filtering: the whitening filter, the matched filter. Polarimetric-dependent phase unwrapping in 3D IFSAR.
  • Image interpretation: target recognition processes reviewed.
A “Radar Revolution” the Phased Array.
  • The all-important antenna. General antenna theory was quickly reviewed. Sidelobe concerns, suppression techniques. Ultra-low sidelobe design.
  • The phased array. Electronic scanning, methods, typical componentry. Behavior with scanning, the impedance problem, and matching methods. The problem of bandwidth; time-delay steering. Adaptive patterns, adaptivity theory, and practice. Digital beam forming. The “active” array.
  • Phased array radar, system considerations.
Advanced-Data Processing.
  • Detection in clutter, threshold control schemes, CFAR.
  • Background analysis: clutter statistics, parameter estimation, clutter as a compound process.
  • Association, contacts to tracks.
  • Track estimation, filtering, adaptivity, and multiple hypothesis testing.
  • Integration: multi-radar, multi-sensor data fusion, in both detection and tracking, greater use of supplemental data, augmenting the radar processing.
Other Topics.
  • Bistatics, the resurgent interest. Review of the basics of bistatic radar, challenges, and early experiences. New opportunities: space; terrestrial. Achievements reported.
  • Space-Time Adaptive Processing (STAP), airborne radar emphasis.
  • Ultra-wideband short pulse radar, various claims (well-founded and not); an example UWB SAR system for good purpose.
  • Concluding the discussion, course review.
Advanced Developments in Radar Technology TrainingAdvanced Developments in Radar Technology Training Course Wrap-Up