Modeling and Simulation in the Systems Engineering Process Training
Commitment | 4 Days, 7-8 hours a day. |
Language | English |
User Ratings | Average User Rating 4.8 See what learners said |
Price | REQUEST |
Delivery Options | Instructor-Led Onsite, Online, and Classroom Live |
COURSE OVERVIEW
- In Modeling and Simulation in the Systems Engineering Process Training, define and distinguish key modeling and simulation (M&S) terms.
- Describe the types of M&S tools used in the phases of the systems engineering process.
- Distinguish between key elements of simulations of system performance and effectiveness.
- Explain the use of the eXtensible Markup Language (XML), and the Unified and Systems Modeling Languages (UML and SysML).
- Describe the use of simulation interoperability standards, such as the High-Level Architecture.
- Illustrate an architecture for a collaborative simulation environment consisting of simulation applications, environmental representations, data repositories, and user interfaces.
WHAT'S INCLUDED?
- 2 days of Modeling and Simulation in the Systems Engineering Process Training with an expert instructor
- Modeling and Simulation in the Systems Engineering Process Electronic Course Guide
- Certificate of Completion
- 100% Satisfaction Guarantee
RESOURCES
- Modeling and Simulation in the Systems Engineering Process – https://www.wiley.com/
- Modeling and Simulation in the Systems Engineering Process – https://www.packtpub.com/
- Modeling and Simulation in the Systems Engineering Process – https://store.logicaloperations.com/
- Modeling and Simulation in the Systems Engineering Process Training – https://us.artechhouse.com/
- Modeling and Simulation in the Systems Engineering Process – https://www.amazon.com/
RELATED COURSES
- Architecting Security Training
- Architecting with DODAF Training
- Applied Systems Engineering Training
- Combat Systems Engineering Training
- Software Engineering Advanced Training
- Systems Architecting- Fundamentals Training
- System Architecting with SysML Training
- Systems Engineering Fundamentals Training
ADDITIONAL INFORMATION
CUSTOMIZE IT
- We can adapt this Modeling & Simulation in the Systems Engineering Process Training course to your group’s background and work requirements at little to no added cost.
- If you are familiar with some aspects of this Modeling & Simulation in the Systems Engineering Process course, we can omit or shorten their discussion.
- We can adjust the emphasis placed on the various topics or build the Modeling & Simulation in the Systems Engineering Process course around the mix of technologies of interest to you (including technologies other than those included in this outline).
- If your background is nontechnical, we can exclude the more technical topics, include the topics that may be of special interest to you (e.g., as a manager or policy-maker), and present the Modeling & Simulation in the Systems Engineering Process Training course in a manner understandable to lay audiences.
COURSE OBJECTIVES
Upon completion of this Modeling & Simulation in the Systems Engineering Process Training, you will be able to:
AUDIENCE/TARGET GROUP
The target audience for this Modeling & Simulation in the Systems Engineering Process course:
- All
CLASS PREREQUISITES
The knowledge and skills that a learner must have before attending this Modeling and Simulation in the Systems Engineering Process course are:
- N/A
COURSE SYLLABUS
- Distinguishing Characteristics. Views and Categories of Models and Simulations. The resolution, Aggregation, and Fidelity. Overview of the Model/Simulation Development Process. Important M&S-Related Processes. M&S as a Professional Discipline.
- M&S in System Needs and Opportunities Analysis. Needs vs. Opportunities for New or Improved Systems. The U.S. Military Process for Capabilities-Based Assessment. Commercial System Processes. M&S Use in Operational Analysis, Functional Analysis, and Feasibility Determination.
- M&S in Concept Exploration and Evaluation. Effectiveness Simulations and Their Components. Analyses of Alternatives. Ensuring a “Level Playing Field”. System Effectiveness Simulation Examples.
- M&S in Design and Development. Range of Engineering Disciplines Needed for System Design and Development Simulations. Simulating Interactions between System Components. Time Management in Simulations Interacting at Run-Time. Examples of Interacting Simulations for Design and Development.
- M&S in Integration and Test & Evaluation. Simulation Use during Integration. Planning for Use of Models and Simulations during T&E. Simulation Use During Testing. Post-Test Evaluation Using Models and Simulations.
- M&S in Production and Sustainment. Planning for Use of Models and Simulations During Production. Model and Simulation Use During Production. Systems Operation Simulations. Reliability Modeling, Logistics Simulations, and Ownership Cost Modeling.
- Basic Markup and Modeling Languages: XML, UML, and SysML. History and Characteristics of Markup and Modeling Languages. The eXtensible Markup Language (XML). The Unified Modeling Language (UML). The Systems Modeling Language (SysML).
- Interoperable Simulation – the High-Level Architecture (HLA). The History of Interoperable Simulation. Why the High-Level Architecture (HLA) is Important for Systems Engineering. Components of the HLA Standard. HLA Time Management. The Distributed Simulation Engineering and Execution Process (DSEEP).
- Live-Virtual-Constructive (LVC) Simulation Techniques. Differentiating Live, Virtual, and Constructive Simulations – A Review. Why LVC Simulation Federations Are Important for Systems Engineering. Simulation Standards for LVC Simulations. Issues Encountered in LVC Simulation Federations, and Efforts to Mitigate Them.
- Collaborative Simulation Environments for Systems Engineering. Background: Studies on M&S for System Acquisition. Definition of a Collaborative Simulation Environment (CSE). Characteristics of a CSE. A Reference Model for a CSE. Examples of CSE Architectures.
- M&S Asset Repositories – Construction and Use. Definitions: Repository, Catalog, and Registry. Issues in the Discovery and Reuse of M&S Assets. Desired Features for Repositories. Metadata (Data About the Data), with an Example. Catalog and Repository Examples. Putting Collaborative Environments and Repositories Together for Systems Engineering.
- Modeling the Natural Environment. Definition of the Natural Environment. Overview of the Air, Ground, Maritime, and Space Environments. Separating the Natural Environment from Sources and Sensors. Issues in Aggregation of Natural Environment Representations. Environmental Modeling Standards: SEDRIS.
- Modeling the Man-Made Environment. Definition of a Man-Made Environment. Distinguishing the Man-Made Environment from the Natural Environment and Friendly/Threat Systems. Some Man-Made Environment Modeling Examples. Man-Made Environment Modeling Standards: Shapefiles.
- The Future of M&S in Systems Engineering. Acquisition M&S Research Areas. Model-Based Systems Engineering (MBSE) and Model-Based Engineering (MBE). Levels of Interoperability, and Moving from Syntactic to Semantic. Simulation Composability.