Satellite Laser Communications Training

Commitment 3 days, 7-8 hours a day.
Language English
User Ratings Average User Rating 4.8 See what learners said
Price REQUEST
Delivery Options Instructor-Led Onsite, Online, and Classroom Live

COURSE OVERVIEW

This Satellite Laser Communications Training course will provide an introduction and overview of laser communication principles and technologies for unguided, free-space beam propagation. Special emphasis is placed on highlighting the differences, as well as similarities to RF communications and other laser systems, and design issues and options relevant to future laser communication terminals.

WHAT'S INCLUDED?
  • 3 days of Satellite Laser Communications Training with an expert instructor
  • Satellite Laser Communications Course Guide
  • Certificate of Completion
  • 100% Satisfaction Guarantee
RESOURCES
RELATED COURSES

ADDITIONAL INFORMATION

COURSE OBJECTIVES

This Satellite Laser Communications course will provide you with the knowledge and ability to perform basic satellite laser communication analysis, identify tradeoffs, interact meaningfully with colleagues, evaluate systems, and understand the literature.

  • How is a laser-communication system superior to conventional technology?
  • How to link performance is analyzed.
  • What are the options for acquisition, tracking, and beam pointing?
  • What are the options for laser transmitters, receivers, and optical systems?
  • What are the atmospheric effects on the beam and how to counter them?
  • What are the typical characteristics of laser communication system hardware?
  • How to calculate mass, power, and cost of the flight.
CUSTOMIZE IT
  • We can adapt this Satellite Laser Communications course to your group’s background and work requirements at little to no added cost.
  • If you are familiar with some aspects of this Satellite Laser Communications course, we can omit or shorten their discussion.
  • We can adjust the emphasis placed on the various topics or build the Satellite Laser Communications around the mix of technologies of interest to you (including technologies other than those included in this outline).
  • If your background is nontechnical, we can exclude the more technical topics, include the topics that may be of special interest to you (e.g., as a manager or policy-maker), and present the Satellite Laser Communications course in a manner understandable to lay audiences.
AUDIENCE/TARGET GROUP

The target audience for this Satellite Laser Communications course:

  • All
CLASS PREREQUISITES

The knowledge and skills that a learner must have before attending this  Satellite Laser Communications Training course are:

  • N/A

COURSE SYLLABUS

  1. Introduction. Brief historical background, RF/Optical comparison; basic Block diagrams; and applications overview.
  2. Link Analysis. Parameters influencing the link; frequency dependence of noise; link performance comparison to RF; and beam profiles.
  3. Laser Transmitter. Laser sources; semiconductor lasers; fiber amplifiers; amplitude modulation; phase modulation; noise figure; nonlinear effects; and coherent transmitters.
  4. Modulation & Error Correction Encoding. PPM; OOK and binary codes; and forward error correction.
  5. Acquisition, Tracking, and Pointing. Requirements; acquisition scenarios; acquisition; point-ahead angles, pointing error budget; host platform vibration environment; inertial stabilization: trackers; passive/active isolation; gimbaled transceiver; and fast steering mirrors.
  6. Satellite Laser Communications Training – Opto-Mechanical Assembly. Transmit telescope; receive telescope; shared transmit/receive telescope; thermo-Optical- Mechanical stability.
  7. Atmospheric Effects. Attenuation, beam wander; turbulence/scintillation; signal fades; beam spread; turbid, and mitigation techniques.
  8. Detectors and Detections. Discussion of available photo-detectors noise figure; amplification; background radiation/ filtering; and mitigation techniques. Poisson photon counting; channel capacity; modulation schemes; detection statistics; and SNR / Bit error probability. Advantages/complexities of coherent detection; optical mixing; SNR, heterodyne and homodyne; laser linewidth.
  9. Crosslinks and Networking. LEO-GEO & GEO-GEO; orbital clusters; and future/advanced.
  10. Flight Qualification. Radiation environment; environmental testing; and test procedure.
  11. Eye Safety. Regulations; classifications; wavelength dependence, and CDRH notices.
  12. Satellite Laser Communications Training – Cost Estimation. Methodology, models; and examples.
  13. Terrestrial Optical Communications. Communications systems developed for terrestrial links.
 Satellite Laser Communications Training Satellite Laser Communications Training Course Wrap-Up

REQUEST MORE INFORMATION