Space-Based Laser Systems Training
Commitment | 2 days, 7-8 hours a day. |
Language | English |
User Ratings | Average User Rating 4.8 See what learners said |
Price | REQUEST |
Delivery Options | Instructor-Led Onsite, Online, and Classroom Live |
COURSE OVERVIEW
This two-day short Space-Based Laser Systems Training reviews the underlying technology areas used to construct and operate space-based laser altimeters and laser radar systems. The Space-Based Laser Systems Training course presents background information to allow an appreciation for designing and evaluating space-based laser radars.
Fundamental descriptions are given for direct-detection and coherent-detection laser radar systems, and, details associated with space applications are presented. System requirements are developed and the methodology of system component selection is given. Performance evaluation criteria are developed based on system requirements. Design considerations for space-based laser radars are discussed and case studies describing previous and current space instrumentation are presented. In particular, the development, testing, and operation of the NEAR Laser Radar are discussed in detail to illustrate design decisions.
Emerging technologies pushing next-generation laser altimeters are discussed, the use of lasers in BMD and TMD architectures is summarized, and additional topics addressing laser radar target identification and tracking aspects are provided. Fundamentals associated with lasers and optics are not covered in this course, a generalized level of understanding is assumed.
WHAT'S INCLUDED?
- 2 days of Space-Based Laser Systems Training with an expert instructor
- Space-Based Laser Systems Electronic Course Guide
- Certificate of Completion
- 100% Satisfaction Guarantee
RESOURCES
- Space-Based Laser Systems Training – https://www.wiley.com/
- Space-Based Laser Systems Training – https://www.packtpub.com/
- Space-Based Laser Systems – https://store.logicaloperations.com/
- Space-Based Laser Systems – https://us.artechhouse.com/
- Space-Based Laser Systems – https://www.amazon.com/
RELATED COURSES
ADDITIONAL INFORMATION
CUSTOMIZE IT
- We can adapt this Space-Based Laser Systems course to your group’s background and work requirements at little to no added cost.
- If you are familiar with some aspects of this Space-Based Laser Systems course, we can omit or shorten their discussion.
- We can adjust the emphasis placed on the various topics or build the Space-Based Laser Systems course around the mix of technologies of interest to you (including technologies other than those included in this outline).
- If your background is nontechnical, we can exclude the more technical topics, include the topics that may be of special interest to you (e.g., as a manager or policy-maker), and present the Space-Based Laser Systems course in a manner understandable to lay audiences.
COURSE OBJECTIVES
Upon completing this Space-Based Laser Systems course, learners will be able to meet these objectives:
AUDIENCE/TARGET GROUP
The target audience for this Space-Based Laser Systems course:
- All
CLASS PREREQUISITES
The knowledge and skills that a learner must have before attending this Space-Based Laser Systems Training course are:
- N/A
COURSE SYLLABUS
- Introduction to Laser Radar Systems. Definitions Remote sensing and altimetry, Space object identification and tracking.
- Review of Basic Theory. How Laser Radar Systems Function.
- Direct-detection systems. Coherent-detection systems, Altimetry application, Radar (tracking) application, Target identification application.
- Laser Radar Design Approach. Constraints, Spacecraft resources, Cost drivers, Proven technologies, a Matching instrument with the application.
- System Performance Evaluation. Development of laser radar performance equations, Review of secondary considerations, Speckle, Glint, Trade-off studies, Aperture vs. power, Coherent vs. incoherent detection, Spacecraft pointing vs. beam steering optics.
- Laser Radar Functional Implementation. Component descriptions, System implementations.
- Case Studies. Altimeters, Apollo 17, Clementine, Detailed study of the NEAR laser altimeter design & implementation, selection of system components for high-rel requirements, testing of space-based laser systems, nuances associated with operating space-based lasers, Mars Global Surveyor, Radars, LOWKATR (BMD midcourse sensing), FIREPOND (BMD target ID), TMD/BMD Laser Systems, COIL: A TMD Airborne Laser System (TMD target lethal interception).
- Emerging Developments and Future Trends. PN coding, Laser vibrometry, Signal processing hardware Implementation issues.